LinkedHashMap 比较冷门,但是不会可不行 20210920

哈喽,大家好,我是指北君。
说到集合类,之前介绍的ArrayList类,HashMap可能是大家日常用的最多的类,但是对于另一个集合类 LinkedHashMap,可能大家用的不多,但是这种链式哈希集合,有些情况确实特别好用。

1、LinkedHashMap 定义

  LinkedHashMap 是基于 HashMap 实现的一种集合,具有 HashMap 集合上面所说的所有特点,除了 HashMap 无序的特点,LinkedHashMap 是有序的,因为 LinkedHashMap 在 HashMap 的基础上单独维护了一个具有所有数据的双向链表,该链表保证了元素迭代的顺序。

  所以我们可以直接这样说:LinkedHashMap = HashMap + LinkedList。LinkedHashMap 就是在 HashMap 的基础上多维护了一个双向链表,用来保证元素迭代顺序。

  更形象化的图形展示可以直接移到文章末尾。

1
2
3
public class LinkedHashMap<K,V>
    extends HashMap<K,V>
    implements Map<K,V>

2、字段属性

  ①、Entry<K,V>

1
2
3
4
5
6
static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

  LinkedHashMap 的每个元素都是一个 Entry,我们看到对于 Entry 继承自 HashMap 的 Node 结构,相对于 Node 结构,LinkedHashMap 多了 before 和 after 结构。

  下面是Map类集合基本元素的实现演变。

  LinkedHashMap 中 Entry 相对于 HashMap 多出的 before 和 after 便是用来维护 LinkedHashMap 插入 Entry 的先后顺序的。

  ②、其它属性

1
2
3
4
5
6
7
8
//用来指向双向链表的头节点
transient LinkedHashMap.Entry<K,V> head;
//用来指向双向链表的尾节点
transient LinkedHashMap.Entry<K,V> tail;
//用来指定LinkedHashMap的迭代顺序
//true 表示按照访问顺序,会把访问过的元素放在链表后面,放置顺序是访问的顺序
//false 表示按照插入顺序遍历
final boolean accessOrder;

  注意:这里有五个属性别搞混淆的,对于 Node next 属性,是用来维护整个集合中 Entry 的顺序。对于 Entry before,Entry after ,以及 Entry head,Entry tail,这四个属性都是用来维护保证集合顺序的链表,其中前两个before和after表示某个节点的上一个节点和下一个节点,这是一个双向链表。后两个属性 head 和 tail 分别表示这个链表的头节点和尾节点。

3、构造函数

  ①、无参构造

1
2
3
4
    public LinkedHashMap() {
        super();
        accessOrder = false;
    }

  调用无参的 HashMap 构造函数,具有默认初始容量(16)和加载因子(0.75)。并且设定了 accessOrder = false,表示默认按照插入顺序进行遍历。

  ②、指定初始容量

1
2
3
4
    public LinkedHashMap(int initialCapacity) {
        super(initialCapacity);
        accessOrder = false;
    }

  ③、指定初始容量和加载因子

1
2
3
4
    public LinkedHashMap(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor);
        accessOrder = false;
    }

4、添加元素

  LinkedHashMap 中是没有 put 方法的,直接调用父类 HashMap 的 put 方法。关于 HashMap 的put 方法,可以参看我之前对于 HashMap 的介绍。

  我将方法介绍复制到下面:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
//hash(key)就是上面讲的hash方法,对其进行了第一步和第二步处理
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    /**
     *
     * @param hash 索引的位置
     * @param key  键
     * @param value  值
     * @param onlyIfAbsent true 表示不要更改现有值
     * @param evict false表示table处于创建模式
     * @return
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
            boolean evict) {
         Node<K,V>[] tab; Node<K,V> p; int n, i;
         //如果table为null或者长度为0,则进行初始化
         //resize()方法本来是用于扩容,由于初始化没有实际分配空间,这里用该方法进行空间分配,后面会详细讲解该方法
         if ((tab = table) == null || (n = tab.length) == 0)
             n = (tab = resize()).length;
         //注意:这里用到了前面讲解获得key的hash码的第三步,取模运算,下面的if-else分别是 tab[i] 为null和不为null
         if ((p = tab[i = (n - 1) & hash]) == null)
             tab[i] = newNode(hash, key, value, null);//tab[i] 为null,直接将新的key-value插入到计算的索引i位置
         else {//tab[i] 不为null,表示该位置已经有值了
             Node<K,V> e; K k;
             if (p.hash == hash &&
                 ((k = p.key) == key || (key != null && key.equals(k))))
                 e = p;//节点key已经有值了,直接用新值覆盖
             //该链是红黑树
             else if (p instanceof TreeNode)
                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
             //该链是链表
             else {
                 for (int binCount = 0; ; ++binCount) {
                     if ((e = p.next) == null) {
                         p.next = newNode(hash, key, value, null);
                         //链表长度大于8,转换成红黑树
                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                             treeifyBin(tab, hash);
                         break;
                     }
                     //key已经存在直接覆盖value
                     if (e.hash == hash &&
                         ((k = e.key) == key || (key != null && key.equals(k))))
                         break;
                     p = e;
                 }
             }
             if (e != null) { // existing mapping for key
                 V oldValue = e.value;
                 if (!onlyIfAbsent || oldValue == null)
                     e.value = value;
                 afterNodeAccess(e);
                 return oldValue;
             }
         }
         ++modCount;//用作修改和新增快速失败
         if (++size > threshold)//超过最大容量,进行扩容
             resize();
         afterNodeInsertion(evict);
         return null;
    }

5、删除元素

  同理也是调用 HashMap 的remove 方法,这里我不作过多的讲解,着重看LinkedHashMap 重写的第 46 行方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    final Node<K,V> removeNode(int hash, Object key, Object value,
            boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //(n - 1) & hash找到桶的位置
        if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        //如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash &&
        ((k = p.key) == key || (key != null && key.equals(k))))
        node = p;
        //如果桶节点存在下一个节点
        else if ((e = p.next) != null) {
            //节点为红黑树
        if (p instanceof TreeNode)
         node = ((TreeNode<K,V>)p).getTreeNode(hash, key);//找到需要删除的红黑树节点
        else {
         do {//遍历链表,找到待删除的节点
             if (e.hash == hash &&
                 ((k = e.key) == key ||
                  (key != null && key.equals(k)))) {
                 node = e;
                 break;
             }
             p = e;
         } while ((e = e.next) != null);
        }
        }
        //删除节点,并进行调节红黑树平衡
        if (node != null && (!matchValue || (v = node.value) == value ||
                      (value != null && value.equals(v)))) {
        if (node instanceof TreeNode)
         ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
        else if (node == p)
         tab[index] = node.next;
        else
         p.next = node.next;
        ++modCount;
        --size;
        afterNodeRemoval(node);
        return node;
        }
        }
        return null;
    }

6、查找元素

1
2
3
4
5
6
7
8
public V get(Object key) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) == null)
            return null;
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }

  相比于 HashMap 的 get 方法,这里多出了第 5,6行代码,当 accessOrder = true 时,即表示按照最近访问的迭代顺序,会将访问过的元素放在链表后面。

  对于 afterNodeAccess(e) 方法,在前面第 4 小节 添加元素已经介绍过了,这就不在介绍。

7、遍历元素

  在介绍 HashMap 时,我们介绍了 4 中遍历方式,同理,对于 LinkedHashMap 也有 4 种,这里我们介绍效率较高的两种遍历方式:

  ①、得到 Entry 集合,然后遍历 Entry

1
2
3
4
5
6
7
8
9
LinkedHashMap<String,String> map = new LinkedHashMap<>();
        map.put("A","1");
        map.put("B","2");
        map.put("C","3");
        map.get("B");
        Set<Map.Entry<String,String>> entrySet = map.entrySet();
        for(Map.Entry<String,String> entry : entrySet ){
            System.out.println(entry.getKey()+"---"+entry.getValue());
        }

  ②、迭代

1
2
3
4
5
        Iterator<Map.Entry<String,String>> iterator = map.entrySet().iterator();
        while(iterator.hasNext()){
            Map.Entry<String,String> entry = iterator.next();
            System.out.println(entry.getKey()+"----"+entry.getValue());
        }

8、小结

  好了,这就是JDK中java.util.LinkedHashMap 类的介绍。

  我是指北君,操千曲而后晓声,观千剑而后识器。感谢各位人才的:点赞、收藏和评论,我们下期更精彩!

Java Geek Tech wechat
欢迎订阅 Java 技术指北,这里分享关于 Java 的一切。